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FOREWORD 

In a digital camera, when we take the voltage output of an individual 
sensor element and convert it to digital form, a phenomenon called 
quantizing (often called quantization) takes place. As a result, the 
digital representation does not exactly represent the voltage. At the 
end of the digital image chain, this results in a discrepancy between 
the reconstructed image and the original image. 

In the area of waveform-based digital representation of speech 
waveforms, we sometimes characterize this discrepancy between the 
original data and the reconstructed data as a special kind of 
pseudo-noise, quantizing noise. 

Some workers suggest that this concept is pertinent to the impact of 
quantizing error on digital images, and that quantizing noise should be 
reckoned among the ingredients of noise in a digital imaging system, a 
notion with which the author disagrees. In any case, the process of 
quantizing does have an effect on how noise already present in the 
sensor voltage is seen in the digital representation. In this article, both 
these matters are examined. 

An appendix discusses a similar concept followed in the field of digital 
video engineering. 

BACKGROUND 

Quantizing 

Analog information is characterized by its “continuous” nature. That 
is, in general, the variable in which we are interested can take on any 
value within certain limits. The actual temperature of the air outside 
can be (approximately) 28.17652° C, or 28.17653° C. 

When we digitize an analog variable, we take each occurrence of its 
value and assign it a number taken from a discrete repertoire of 
values. In effect (in the “classical” arrangement), we “round” the 
actual value to the nearest value in that repertoire. This process is 
called quantizing. The term comes from the notion that we treat all the 
values to be digitally represented as if they were made up of an 
integral number of increments (quanta), usually of some fixed size. 
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“Quantization” and “quantizing” 

We often encounter the words quantization and quantizing, which 
seem to be almost synonyms. Usage in this regard is not too well 
regulated. The trail starts with the verb, which is (to) quantize. From 
the standpoint of a linguistic purist, the process would be called 
quantizing (the gerund form of the noun), but quantization is often 
used for the result (and sometimes for the process as well). The 
related adjective is often seen as either quantizing (as in quantizing 
error) or quantization (as in quantization error). 

In the face of all that editorial sophistry and ambiguity, I will use here 
the term quantizing in all situations. 

Quantizing error 

The result of this process is that the digital representation is never 
exactly equal to the actual value being represented. The discrepancy is 
called quantizing error. 

For example, suppose that our digital structure uses an 8-bit number, 
interpreted as providing integer values from (in decimal) -128 through 
+127. If we encode the temperature 28.17652° C in a 
straightforward way, it will be given the “data number” (DN) 28 (in 
decimal). In this case, the temperature indicated by that DN will differ 
from the actual temperature by –0.17652° C. This is the quantizing 
error in this specific case. 

If a suite of data numbers represents the “samples” that directly 
describe, for example, an audio waveform, or a photographic image, 
then when we reconstruct the waveform or image from that suite of 
numbers the result will not exactly match the original waveform or 
image. 

In the digital representation of a waveform, we can aptly speak of the 
end result as quantizing distortion. There is no equally tidy description 
of the overall effect on a photographic image. 

The quantizing step size 

In a common quantizing situation, the values in the discrete repertoire 
represent evenly-spaced values of the quantity being represented. In 
fact the increment of the data number (DN) itself is usually 1, but 
often there is a scaling factor involved. Thus, in a temperature system, 
a change in 1 in the DN might represent a change of 0.2° C in the 
temperature being represented. 

The spacing between available values, in the scale of the actual 
quantity, is called the quantizing step. In the example just above, that 
is (exactly) 0.2° C. 
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In this article, when we speak in general, abstract terms, we assume 
that the scale factor involved is such that the quantizing step is 1 
“unit”. 

The nature of quantizing error 

We may ask whether quantizing error is random or not. Well, yes and 
no. 

If the actual value being encoded is known, then the quantizing error 
is determined. If the value is constant, so will be the quantizing error. 
Assuming that the quantizing step is 1 (and that the boundaries 
between steps fall halfway between integers, the “classical rounding” 
rule), then a source value of 7.028 will always receive a DN of 7, and 
the quantizing error will always be -0.028. There is nothing random 
about this. 

But in the overall operation of a system, the source values vary (else 
there would be no need to encode and transmit them—the recipient 
would already know!). Thus, the quantizing error will typically be 
different for each value processed. 

To analytically evaluate the quantizing error behavior of a system on 
an “overall” basis, we often assume that the values we encounter will 
be uniformly distributed over a range that is an integral number of 
quantizing steps in width, or else over a large (but not necessarily 
integral) number of quantizing steps. That is, we assume it would be 
equally likely that an individual value would lie in the range 15-15.2 
units as in the range 22.3-22.5 units. 

How do we describe the magnitude of the quantizing error? 

It is often attractive to have a single “metric” that describes the 
magnitude of the quantizing error phenomenon in a certain system. 
We might consider using the average quantizing error, but in fact, 
under our assumptions, that would be zero (since errors would occur 
that were both positive and negative). 

The quantizing error is limited to ±b/2, where b is the quantizing band 
size. Thus we might want to use the maximum absolute value of the 
error (which is always b/2). 

However, especially when we look into the relationship between 
quantizing error and other discrepancies in the reconstructed data 
(such as noise), we often draw upon to a common measure from the 
world of statistics, the standard deviation of the error. 

The standard deviation of a variable’s value is obtained by taking the 
various instances of the value (the error quantities, in this case), 
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squaring them, averaging these squared values, and taking the square 
root of the average.1 This process is identical to the determination of 
the root-mean-square (RMS) value of a varying electrical voltage or 
current (such as an AC waveform). And in fact there is an electrical 
rationale for the choice of this particular metric of quantizing error 
(which we will hear of shortly). 

In statistical work, the symbol for standard deviation is  (lower-case 
Greek sigma). 

In line with the principle described earlier, to evaluate a particular 
scheme, we look at the quantizing error that would occur for a large 
number of possible variable values (usually evenly distributed over one 
quantizing band, or over an arbitrary large range), and then determine 
the  for the entire set of errors attending those different variable 
values.2 

Note that I have not suggested that this metric for the effect of 
quantizing error is useful in the area of digital imaging. It is considered 
useful in a number of other situations 

Controlling quantizing error 

We haven’t yet discussed the actual adverse impact of quantizing 
error, but it seems obvious at this point that it is not a good thing, so 
having less would be better. 

We mentioned above that the maximum magnitude of the quantizing 
error that can occur is b/2, where b is the size of the quantizing step. 
Clearly, if we reduce b, then the maximum quantizing error decreases, 
and not surprisingly the measure we mentioned of overall quantizing 
error () decreases as well. 

Given that we must, in any particular system, accommodate a certain 
range of the variable of interest, decreasing the size of the quantizing 
step means that we must have more steps overall (more possible DN 
values). In a binary context, this means an increase in the number of 
the bits used to represent the DN. Essentially, each bit we add cuts 

                                      

1 To be precise, we take the differences of the individual values from the average of 
the suite, square those differences, and so forth. Here, where we often assume the 
average quantizing error to be zero, we can use the simple description above. 

2 Note that, even though we assume each of those different variable values is 
equally-probable, the overall  is not the average of the s for the different values. 
Rather, it is the square root of the sum of the squares of the individual s. In other 
words, we just extend the averaging of the squares of the individual errors, a step in 
the determination of , over the entire suite of test data. 
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the size of the quantizing step in half, and the measure of the 
quantizing error in half. 

Note that, in general, we cannot do this “cost free”, since there is a 
certain cost associated with storing or transmitting a bit.   

IMPACT OF QUANTIZING ERROR IN DIGITAL AUDIO 

Principle of digital representation of an audio waveform 

When we represent an audio waveform in digital form (in the most 
straightforward way), we first “sample” the waveform. That is, we 
capture the instantaneous value of the signal voltage at repetitive 
intervals. If the rate at which we take these samples is greater (even 
by a little) than twice the highest frequency contained in the 
waveform, then, according to the Nyquist-Shannon sampling theorem, 
from the suite of samples values alone we can exactly reconstruct the 
entire original waveform. Note that this doesn’t say “a good 
approximation of the original waveform”—it says “the original 
waveform” (implying a precise reconstruction). 

However, perfectly achieving this promise requires that when we 
capture the instantaneous voltage, we do so “exactly”, to unlimited 
precision and with zero error. Of course, this is impossible in practice. 
But to the degree we approach that, we can actually approach the 
promise of the theorem. 

We then take each sample voltage and digitize it—we assign it a data 
number (DN). Of course, quantizing is involved here, and thus 
quantizing error emerges. 

When we want to reconstruct the original waveform, we reconstruct 
each sample voltage based on the DN that describes it, and then 
through a filter process, from that recreated train of samples we 
reconstruct the waveform. 

But the DNs do not exactly represent the samples (owing to quantizing 
error), and as a consequence, the recreated samples are not identical 
to the original sample. Thus the waveform reconstructed from them is 
not identical to the original waveform. 

This impairment is called quantizing distortion. 

The practical perceptual impact of quantizing distortion is that, if we 
have enough of it, the recovered audio “sounds funny” (“buzzy”, in 
severe cases). 
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“Quantizing noise” 

As we make detailed plans for a system for digital representation of 
audio waveforms, or test the behavior of an actual system, we need 
some metric, a “score” by which we can describe numerically “how 
bad is the quantizing distortion”. 

In a telecommunication system, we can artificially choose to think of 
“noise” as being anything that arrives in the delivered waveform that 
was not present in the original waveform. Having done so, we can 
then think of the discrepancy between the delivered waveform and the 
original waveform, due to quantizing distortion, as a special kind of 
noise (perhaps a “pseudo-noise”). 

The object of this outlook is that we can judge the extent of 
quantizing distortion using the same definition (and even the same 
measuring instruments) we use to judge the extent of the more 
familiar kinds of noise. 

In particular, this involves, in principle: 

• isolating the noise component of the delivered waveform (perhaps 
by “subtracting out” a replica of the original waveform) 

• dissecting the noise component into sub-components, each 
spanning only a narrow range of audible frequencies 

• multiplying the power3 in each such sub-component by a factor 
that represents the relative sensitivity of the human ear to sound at 
that frequency (called “weighting” the noise by frequency) 

• adding all the results for all the sub-components 

The sum (in units of power) is used as the metric describing the 
amount of noise. 

The RMS measure 

The power represented by an electrical waveform (under some 
assumption about circuit impedance) is proportional to the square of 
the voltage. But, in the case of a constantly-varying voltage (that is, a 
waveform), what voltage is that? It is the RMS measure of the voltage 
(which is its standard deviation). (The voltage of your household 
electrical supply is stated in terms of its RMS value.) 

                                      

3 In general, the human response to an acoustical waveform is related to the power 
contained in it. Thus, when we are working with electrical audio waveforms or their 
components, we are interested in the power that they represent.  
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Now the loop has been closed—we see why, at least in the digital 
audio context, the assessment of quantizing error in terms of its 
standard deviation makes perfect sense: the standard deviation is a 
direct indicator of the power contained in the “quantizing noise”, 
which in turn is an indication of its impact on the listener. 

In the more general case of quantizing error, where the values involved 
are not voltages along a waveform but perhaps thermometer readings, 
there is a statistical justification for the use of the standard deviation 
as the “metric” of quantizing error (in fact, as a metric for error of any 
type). I will not discuss that here. And in fact, its validity is not nearly 
so obvious in the general case as in the electrical waveform case; 
there is no physical property, equivalent to “power”, that comes from 
the square of the standard deviation of a suite of temperature 
readings. 

Is it really “noise”? 

Returning now to the concept of “quantizing noise”, our adoption of 
this notion does not mean that quantizing distortion in any way seems 
to the listener like other familiar kinds of noise. But practical tests 
show that this metric does correlate fairly well with the listener’s 
reaction to the impairment resulting from the quantizing distortion. In 
any case the adoption of the approach was heavily influenced by the 
pragmatic fact, when digital transmission of speech was introduced 
into the telephone network, apparatus for physically performing the 
steps listed above was widely available (it having been used for many 
years to measure noise of the conventional type in analog transmission 
channels). When in doubt, choose a metric that we can measure—
especially with instruments we already have! 

The nature of the perceived impairment 

Why does an audio waveform afflicted by quantizing distortion sound 
“funny” to the listener? Well, if we consider the Fourier transforms of 
the original waveform and of the “distorted” waveform, we will find a 
difference in the frequency composition, and it is basically through the 
frequency composition that the human ear recognizes different 
waveforms. (The cochlea of the human ear essentially performs 
Fourier analysis on the “waveform” of the motion of the eardrum, 
transmitting to the brain its frequency distribution.) 

The human perceptual system is “familiar” with a wide range of 
sounds, and does not expect to hear coming out of the mouth of a 
human a waveform whose frequency composition is different from any 
familiar model. 

In popular music (especially guitar music), we often intentionally 
generate “distorted” waveforms that are not found in nature. It is 
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unlikely that such a waveform, if afflicted in digital transmission by 
substantial quantizing distortion, would be recognized by even a highly 
trained listener as “distorted” from the waveform as transmitted. 

A complication in digital audio is that generally the quantizing interval 
is not constant. Rather, it uniformly increases as we go farther along 
the range of the variable. This arrangement gives better overall 
perceived performance for any number of bits in the encoding. It is a 
little like a constant percentage accuracy in a measuring instrument, in 
which the maximum error is a certain fraction of the voltage being 
measured. 

In particular, it means that the “amount” of quantizing “noise” (its 
standard deviation, or RMS measure) varies with the signal amplitude, 
leading to sort of a uniform “signal-to-(quantizing) noise ratio”. 

As a result, to get a single value of our “metric” that describes the 
quantizing distortion of the system, we need to not just test for 
different instantaneous values of the signal over some range, but must 
test with a sine-wave signal whose amplitude (full range) corresponds 
to the standard test level signal. 

Only through all this subtlety does the metaphor of “quantizing noise” 
as a model for quantifying quantizing distortion in digital audio 
waveforms take life. 

Summary 

Before we move to the real topic of this article, let’s circle back to the 
beginning of this last section. We need to realize that characterizing 
quantizing  distortion as “noise” is only a conceit that lets us quantify 
the phenomenon using the same metrical concept, and physically 
measure it with the same instruments, as for actual noise. Hold that 
thought.  

QUANTIZING ERROR IN DIGITAL PHOTOGRAPHY 

Introduction 

Now that we have some background, partly historical, in hand from 
another field, let’s look at the implications of quantizing error in digital 
photography. 

Pertinent principles of digital imaging 

In this situation, the “continuous variable” to be encoded describes the 
color of the scene (color including both the attributes of luminance and 
chromaticity). This variable is two-dimensional in its domain (since the 
scene, or its image, is two dimensional, in the familiar, geometric 
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sense), and is three-dimensional in its range (in the mathematical 
sense, since color actually requires three variables to describe it). 

To simplify our discussion, we will (unless stated otherwise) think of 
this situation: 

• The domain of our variable is actually just a one dimensional track 
across the image (like one scan line in a video camera). 

• The system is monochrome, so we can replace color with just 
luminance (which is only a single-dimensional quantity, involving 
only a single variable). 

Here again, the variable of interest (the luminance of the scene along a 
track) is sampled by the use of an array of discrete sensor elements 
(sensels). They can be thought of as each capturing the value of the 
variable at a particular spot in the image on the sensor array.4 

The “determination” reported by each sensel is then turned into a data 
number (DN), which describes the value of our luminance variable at 
that point in the image. 

Quantizing and quantizing error 

Of course, quantizing is involved here. If the luminance at a certain 
sensel location (sampling point) is 156.23 units, it will receive a data 
number of 156 (decimal). Insofar as the data number representing the 
value of the variable of that point, it has an error (quantizing error) of 
–0.23 units. 

These data numbers go through a very long process before we are 
able to again reconstruct the image, but for now let’s just suppose 
that we take the suite of data numbers representing the luminance of 
the scene along a track and from them immediately reconstruct the 
luminance variable. (And we will actually do this for every “track” 
across the image, so a complete two-dimensional image is 
reconstructed.) 

This reconstructed image will vary from the actual image (and thus 
from the scene) scene because of quantizing error. 

                                      

4 In reality, they pick up sort of an average luminance over a small area centered on 
a certain point, a distinction that has important technical consequences but which 
we can ignore for the moment. 
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Difference from the audio waveform context 

Here we begin to understand the difference between the audio and 
photographic contexts. How do we generally become aware of the 
effect of quantizing error in this case? Not because it causes a 
more-or-less random discrepancy between the reconstructed 
luminance of every point in the image and the actual luminance of the 
scene point (although it does). In general, we would not be able to 
discern that as “anomalous” (the way a listener to a reconstructed 
audio signal affected by quantizing distortion would be able to, 
because of familiarity with typical speech waveforms). 

There are two principal ways in which the impact of quantizing error 
are “recognizable” to the viewer of the image. 

One is the effect on areas of the scene that have a fairly uniform and 
gradually-varying luminance. Since the digital representation can only 
convey luminances that differ by integral multiples of one digital unit, 
we see “bands” across such an area, each band having a constant 
luminance across it, with the luminance changing slightly, but 
probably visibly, from band to band (the difference corresponding to a 
change of one unit in the digital number). 

Even when this banding is not prominent, it can negatively impact the 
image. But this phenomenon is greatly distinct from what we normally 
think of as “noise” in an image: a random discrepancy in the 
reconstructed luminance that appears in an area of constant or slowly 
varying luminance as a “mottled” or “granular” effect. 

The second situation is on boundaries between well-defined scene 
areas (the edge of a door frame, for example). These typically involve 
a “luminance slope” across the boundary. Quantizing error can cause 
“banding” across that slope, which of itself may hardly be visible. But 
if the luminance is also slowly changing along the boundary, the result 
may be a subtle “zig-zag” effect on the perceived boundary (spoken of 
in video engineering as a “contour effect”).   

What about other scenes, with mostly “finer detail” (my favorite 
example is a shot of the surface of a gravel road)? The quantizing 
distortion makes the reconstructed image different from the actual 
image on the sensor array, but not in a way that the viewer can 
usually notice. 

A metric for quantizing error in this context 

Now, would the standard deviation of the quantizing error give us a 
useful “score” for the particular quantizing scheme used in our 
camera? It doesn’t. 
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In fact, probably the most important single “metric” for quantizing 
behavior in the context of digital imaging is just the size of the 
quantizing step (perhaps expressed as a fraction of the overall 
luminance range). 

And that having been said, it seems that the characterization of 
quantizing error as “noise” here will not, as it did in the digital audio 
context, lead us to a useful metric of quantizing error. 

A conclusion 

Accordingly, I discourage workers in this field from thinking in terms 
of “quantizing noise” when discussing the impact of quantizing error 
on the “faithful and accurate” reproduction of the original 
photographic image, or for including an item for “quantizing noise” in a 
workup of various ingredients of overall noise in a digital imaging 
system.. 

QUANTIZING AND “REAL” NOISE 

Introduction 

Let’s next accept the generally-recognized concept of noise in digital 
imaging: a random phenomenon that manifests as a mottled or 
granular appearance in an image area of uniform or slowly-varying 
luminance. Doesn’t quantizing error contribute to this? 

No, it doesn’t. But it does have an influence on it. 

Noise sources 

In our digital camera image chain, there are various phenomena that 
result in the electrical signal from a sensel having a random departure 
from the voltage that would properly reflect the photometric exposure 
on the sensel. They include: 

• Shot noise. This comes from the statistical nature of the arrival of 
photons. 

• Thermal noise. This comes from random electron activity in the 
sensel detector and associated circuitry owing to their not being at 
a temperature of absolute zero. 

• Reset noise. Each sensel detector has to be reset at the beginning 
of every exposure (initially charged, not discharged, as is 
commonly believed; the incidence of each photon discharges the 
detector by a certain increment). This may not occur consistently, 
for various reasons. Since the final charge of the detector is 
compared to the assumed initial charge to discern the detector’s 



Quantizing Noise Page 12 

 
“report”, this phenomenon causes a random discrepancy in these 
reports. 

These are what produce the “noise” we see in the image. 

The statistical nature of the noise 

Let’s take a moment to examine the nature of these random 
variations. They are generally considered to be (with a certain 
limitation) “Gaussian” in their nature. That means that: 

• the probability that the voltage of the noise component for any 
given “sample” falls in a certain voltage range 

follows essentially the “normal” statistical distribution. The probability 
density curve that presents this distribution is the famous “bell 
curve”. 

Under this distribution, the probability that the noise voltage for a 
particular “sample” lies in a certain narrow band about zero has a 
certain value. The probability that it lies in an adjacent band of the 
same width is less, and in bands of the same width further and further 
from zero is successively less.5 

In a true standard distribution, there would be no limit as to how large 
(positive or negative) the error voltage could be. There might be one 
chance in a billion that the voltage would lie in the range from 
+1000.0 to +1000.1 volts! Fortunately, physical and electrical 
realities mean that this would never actually happen. In a sense, the 
distribution is “truncated” by these realities. 

Since the range of the standard distribution is (conceptually) unlimited 
(every bell curve has infinite width, even though we can’t draw “all of 
it”), how can we describe the degree of variation of a variable having 
a standard distribution (or approximately so)? The statistical measure 
we use is the standard deviation of the distribution, , which was 
discussed earlier in connection with evaluating quantizing “noise” in an 
audio transmission system. A distribution curve with a greater value of 
 is “fatter”, and implies greater variation in the values. 

                                      

5 Why do we not say “the probability that the voltage is a certain value”, but instead 
speak of it as “within a certain small range”? This is because the probability of a 
voltage having a certain value is zero, just as is the probability that a machined roller 
will have a diameter of exactly 2 inches. But we can speak of the probability that 
the diameter is between 1.99999999 inches and 2.00000001 inches. 
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One way to interpret the standard deviation of a “normal” distribution 
is that about 68.2% of the occurrences fall within ±one standard 
deviation from zero (the range from –1 through +1 ).6 

Where we observe it 

Of course, we do not see the effect of the various noise components 
while they are voltages (components of the overall sensel “output 
voltage”). We see their effect in the digital representation of the 
sensel voltage. 

Now we know that quantizing has an effect on the “signal” 
component of that voltage—the part that actually, ideally represents 
the photometric exposure on the sensel. We have spoken of the 
“banding” that is the most common perceptible result of this. 

What effect does it have on the random component of the sensel 
voltage—the “noise”? It is not magically exempt from quantizing error. 

Let’s do a little thought game to get a hint at how this plays. Assume 
that the quantizing “step” in our system is 1 mV, and that quantizing 
follows the “classical rounding” rule (quantizing to the nearest 
allowable value). Imagine that, for all the sensels in a block receiving a 
uniform photometric exposure, the part of the sensel output voltage 
that reflects that photometric exposure (the “signal” component of the 
voltage) is 12.00 mV. Assume for simplicity’s sake that the noise has 
a “truncated uniform” distribution (not Gaussian), and so the noise 
voltage is strictly confined within a certain range, which in this case is 
from -0.04 mV to +0.04 mV, a “range” of 0.08 mV. 

Thus, over our block, the sensel voltages will vary, randomly, over the 
range 11.96 mV through 12.04 mV. 

But these voltages will all be given the digital number (DN) “12”. In an 
image reconstructed from those digital numbers, all the pixels will be 
identical. We will see no noise in numerical analysis of the DNs, and 
we will see no noise on the reconstructed image. The (admittedly 
small) noise in the sensel outputs has been discarded by the 
quantizing process. (How lovely!) 

But before we get too excited, lets consider another (and equally 
likely) case. Here, the actual signal component of the voltage of all the 
sensels is 12.50 mV. The noise is the same (a range of ±0.04 mV). 
The actual sensel voltages will vary randomly from 12.46 mV through 

                                      

6 In the general case, we would say “within ±1 standard deviation from the average 
of the values”; since here we are dealing with error values, in a symmetrical system, 
the average is zero, and so the simpler interpretation (“about zero”) is meaningful.  
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12.64 mV. Since 12.5 mV is the boundary between two quantizing 
levels, about half the sensel voltages will be encoded with the DN 12, 
and about half with the DN 13. The average absolute error (that is, 
regardless of sign) will be about 0.5 mV (quite substantial compared 
to the range of the noise). 

So how can we generalize what quantizing does to the actual sensel 
noise on its way to the digital world? Probably the best thing to do is 
to run a large suite of tests with the “signal” component of the 
“noisy” sensel voltages varying in small steps from perhaps 12.00 mV 
to 13.00 mV. For each trial, we will find a different amount of “noise” 
in the digital representation (we saw just recently the best and worst 
cases). Then perhaps an average of all these will tell us what 
quantizing does to the noise on its way to the digital world. 

If we presume some specific distribution of noise voltages (such as 
the Gaussian distribution ordinarily assumed, with reservations), “we” 
can analytically predict that result. But “I” am not ready to take that 
on this week. 

Rather, I set up a simulation (using an Excel spreadsheet) to give some 
insight into the result. The model uses a Gaussian distribution for the 
noise, and allows us to choose its standard deviation (how “great” 
was the noise). The model also allows us to use different sized 
quantizing intervals. 

The model “ran trials” with the “signal” voltage at ten different values 
over an entire quantizing step (the phenomenon repeats at that 
interval). For each “trial”, the scheme determined the standard 
deviation of the data numbers of the digitized sensel voltages. Those 
results were combined for all ten trials to get an overall assessment 
of: 

• the noise as seen in the digital representation 

 compared to 

• the noise in the original sensel voltages. 

The results are very interesting. Not surprisingly, they differed 
significantly depending on the size of the noise (as compared to the 
quantizing step). In each case, when we speak of the amount of 
noise, it is in terms of standard deviation. Because of practical 
shortcomings in the model (it used a discrete table of the standard 
deviation with only 100 steps, for example), these results are 
approximate, but clearly reveal the general pattern. 

• For noise at the sensel output whose standard deviation was 1/2 
the quantizing step, the noise in the digital output was about 1.25 
times the noise at the sensel output. 
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• For sensel noise whose standard deviation equal to the quantizing 

step, the digital noise was 1.1 times as big as the noise at the 
sensel output. 

• For sensel noise whose standard deviation was 2 times the 
quantizing step, the digital noise was essentially the same size as 
the noise at the sensel output. 

• For sensel noise whose standard deviation was 5 times the 
quantizing step, the digital noise was only 0.9 times as big as the 
noise at the sensel output. 

• For sensel noise whose standard deviation was 10 times the 
quantizing step, the digital noise was only about 0.85 times as big 
as the noise at the sensel output. 

CONCLUSIONS 

Quantizing noise in digital imaging 

• It is not meaningful, nor even pragmatically useful, to think of the 
impact of quantizing error in the reconstructed image as a form of 
noise (“quantizing noise”) 

• In it not meaningful to include “quantizing noise” in the “roundup” 
of noise ingredients in a digital imaging system 

The effect of quantizing error on noise 

• Quantizing error affects the transport of noise from the input to the 
digitization process to its digital output. 

• The degree of noise perceived in the digital representation can be 
slightly larger, or slightly smaller, than the noise actually existing at 
the input to the digitizing process as a result of quantizing 
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APPENDIX A 

“Quantizing noise” in digital video engineering 

 

In digital video engineering, there is a fairly-widely recognized practice 
of characterizing the impact of quantizing error under a metaphor of 
“quantizing noise”, in particular the use of the metric signal to 
quantizing noise ratio. We must note that here, the specific metric for 
signal is the peak-to-peak value of the signal, and the specific metric 
for noise is the RMS value (standard deviation) of the quantizing error. 

I noted in the body of this article that, in a digital photography 
context, the amount of quantizing error depends on the actual value of 
the “signal” for any given pixel in a particular exposure. Thus, to get a 
single figure characterizing the degree of quantizing error, we must 
(actually or on paper) expose the system to a range of signal values, 
and determine the (RMS) value of the quantizing error over that entire 
exercise. 

The very same situation, hardly surprisingly, is encountered in digital 
video. Again, there we expose the system to a variation in the basic 
signal value (representing, again, luminance) extending across the 
entire “tonal scale” of the system (from black to white), with a 
“uniform distribution”. (That is, the signal will be in any given width 
small region of the range for the same fraction of the time, regardless 
of where the range is; it will be in the range 0.15-0.16 V the same 
fraction of the time as in the range 0.53-0.54 V.) 

We determine the RMS value of the suite of individual quantizing 
errors, and use this as the denominator of our signal-to-quantizing-
noise ratio. The numerator (signal) is just the peak to peak value of the 
largest legitimate signal (recognizing that, as we might expect, there is 
a standardized “headroom” built into the scaling of the analog to 
digital conversion.) 

We express this ratio in decibels (dB), as is the custom for (real) 
“signal to noise ratios”.  

If the analog to digital conversion proceeds “ideally”, the result follows 
directly from the “bit depth” of the digital encoding (with no allowance 
for “headroom”: 

8.1002.6  nR  (1) 

where R is the signal to quantizing noise ratio and n is the number of 
bits in the digital representation. 
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(Those who have done theoretical derivations in the area of quantizing 
error in telecommunication systems may guess, correctly, that the 
constant “10.8” grows out of the appearance of the factor 12 at one 
stage of the process. It in fact is 12log20 ). 

And in fact the actual measured values for typical systems fall very 
close to this. 

Now, back to the theme of this paper. Is this quantizing error really 
noise? Let’s see if it “looks like a duck” or “quacks like a duck”. 

What are the perceptual manifestations of quantizing error in a digital 
image? Principally: 

• Banding on areas of slowly-changing luminance (discussed in the 
body of the article). 

• Contour effects (discussed in the body of the article). 

The characterization of these, perceptually, as “noise” is questionable 
(especially for the former). 

Now, lets examine the role of the metric, signal-to-quantizing-noise 
ratio. 

Does it tell us the amount of quantizing error. Yes, in this sense: if we 
have twice the quantizing error (owing to, say, a one bit smaller 
encoding), we have a 6.02 dB less value of the signal-to-quantizing-
noise ratio. (For comparison, if we have twice the real noise, then the 
conventional signal-to-noise ratio is 6.02 dB less.) 

But what about the absolute scale? Is the visual impairment from 
quantizing error, when the signal-to-quantizing-noise ratio is 46 dB 
(which would occur in a 6-bit system), perceptually comparable to the 
visual impairment caused by conventional noise giving a 
signal-to-noise ratio of 46 dB? No. In fact, the nature of their impact is 
so different that it is very difficult to get observers to even make a 
comparison. (“Which of these images do you like the best . . .”) 

And probably, if you ask a video engineer familiar with this matter to 
answer, “how bad is a signal-to-quantizing-noise ratio of 46 dB, 
anyway”, she well might say, “well, you know—like what we get in 
that 6-bit system for our security cameras”. 

Thankfully, nobody (well, almost) takes the use of the term “noise” in 
this definition to suggest that quantizing noise can be added to other 
types of noise (thermal noise in the analog amplifier chain, for 
example) to get an overall noise value, from which an overall 
signal-to-noise ratio can be reckoned. 
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Of course, intellectually, it would be better had the video engineering 
word decided to call their metric “signal to quantizing error ratio”. But 
they didn’t. And we can imagine why. Many workers in that field were 
aware of the clever usage of “quantizing noise” in the field of audio 
waveform encoding, and were anxious to carry that knowledge 
forward when digital video technique later emerged. 

Why the attraction for the “dB” form? Video engineers like to think of 
every ratio in an “amplitude” domain in terms of dB. But, by rights, 
this is only applicable for power, or for quantities having a direct 
relationship to power (including when their squares correspond to 
power. The peak-to-peak range of a video waveform has no 
mathematical relationship to power. 

Nevertheless, the use that is made of the concept here—to give an 
arbitrary metric for the “relative” degree of quantizing error—is fairly 
benign. And of course, the practice is so entrenched that there would 
be little point in my railing out against it (especially in an arena where I 
have no credentials). 

# 

 

 

 


