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ABSTRACT AND INTRODUCTION 

One of the most useful theorems of electrical engineering is the 
maximum power transfer theorem. It states that if a source of electric 
energy can be characterized as a fixed voltage (its internal voltage) in 
series a with fixed resistance (its internal resistance), the greatest 
power can be extracted from that source by a load whose resistance 
is equal to that internal resistance of the source. 

But it is easy to be misdirected by this theorem and apply it in ways 
that are incorrect. 

This article explains the basis for this theorem, and clarifies why some 
misguided “applications” of it are erroneous. A “proof” of the 
theorem, through calculus, is given in an appendix. 

The article shows some ways in which the theorem can be practically 
exploited in AC circuits. It finally discusses the extension of the 
theorem to the general case of AC operation, where the internal 
impedance of the source is not purely resistive. 

1 AC AND DC CIRCUITS 

In actual engineering work, we are more likely to encounter the 
maximum power transfer theorem in AC, rather than DC, circuits. But 
there a number of complications in the case of AC circuits that can 
obscure the basic principles involved. And those principles are the 
same for both DC and AC circuits. 

So I will first discuss the theorem as it applies to DC circuits. Then, 
with the principles in hand, I will slide into the AC realm and introduce 
the further complications (and opportunities) found there. 

2 A DC “SOURCE” 

Imagine that we have a situation in which electrical power is provided 
by some entity that behaves like the following circuit (our “source”). 
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Figure 1. 

Note that the actual source might not really be that circuit. Rather, 
this might be an equivalent circuit that behaves, as seen at its two 
terminals, just as the real circuit behaves, as seen at its two 
terminals.1  

This model source consists of a certain fixed voltage, Vi (its internal 
voltage) in series with a certain fixed resistance, Ri (its internal 
resistance). 

With no current drawn at its terminals, it exhibits a certain voltage (Vi, 
actually), Then, as we draw current with some “load”, the terminal 
voltage falls linearly with the current drawn (owing to linearly 
increasing voltage drop across resistance Ri). 

We assume that our load is itself a resistance, but imagine that we are 
able to choose its value. Our question is, “how much power can the 
load extract from this source, and what resistance of the load will 
bring that about?” 

Here I have redrawn that “source” circuit with some annotations that 
pertain to this investigation: 

 
Figure 2. 

                                      

1 Thévenin’s theorem teaches that any circuit, no matter how complicated, 
consisting wholly of fixed voltage sources and resistors can, insofar at its behavior 
at two terminals is concerned, be replaced by an equivalent circuit such as seen 
here. 
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I have shown the load as actually having a variable resistance, since I 
suggested that we were free to choose that value. I have also marked 
important circuit parameters: the voltage across the load, VL; the 
current in the circuit (and thus through the load), I, and (perhaps 
ultimately most importantly) the power out of the source and into the 
load, PL. 

2.1 The power into the load at two extremes 

Of course, we know from basic electrical engineering principles that 
the power P, flowing across the dashed-line interface into our load, is 
given by: 

L LP IV  (1) 

Now let us consider the value of PL under two extreme conditions: 

• If RL is infinite (that is, if we open circuit the load terminals), then I 
is unavoidably zero, and so the power into the “load” must be zero. 

• If RL is zero (that is, if we short-circuit the load terminals), then VL 
is unavoidably zero, and so the power into the “load” must zero. 

2.2 The power into the load more generally 

But we know intuitively that, in between those two extremes, there 
will be a non-zero power into the load. But how does that power vary 
as we change RL? 

We see an example in this figure: 
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Figure 3. 

This is for a hypothetical circuit for which Vi is 10.0 V and Ri is 
100 ohms. 

The plots show (as a function of load resistance) the voltage across 
the load, the current through the load, and the power into the load. 

The lighter solid curve (read against the vertical axis scale on the left) 
shows the load voltage. 

The dashed curve shows the load current. It is read (as amperes) 
against the axis on the left, but is scaled so the actual value is 1/80 
the scale value. 

The heavier solid curve (read against the vertical axis scale on the 
right) shows the power into the load. 

We see that for a load resistance of zero, the voltage across the load 
is of course zero and so the power into the load (the product of 
voltage and current) is zero (consistent with what I stated a bit 
earlier). 

In the limit, as RL approaches infinity, the circuit current, I, will 
approach zero, and so of necessity PL will approach zero. And of 
course in that situation, with I approaching zero, EL will approach Vi 
(that is, 10.0 V). That is suggested by the figure. 
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2.3 The maximum power point 

We note that in this example the greatest power into the load seems 
to appears to occur with a load resistance of exactly 100 ohms, as 
predicated by the theorem,. 

That maximum power into the load is 0.25 W. In fact, in general: 

2 2

max 4 4
i i

L
L i

V V
P

R R
   (2) 

2.4 Proof 

A mostly rigorous proof of the theorem is given in Appendix A. 

3 WORKING IT BACKWARD? 

Note that I stated the theorem as, “For a source with a certain internal 
voltage and a certain internal resistance . . .”.  

One may be tempted to not give full weight to that introduction and, 
in a case where the resistance of the load (RL) is known (and fixed), 
and Ei is known and fixed, conclude that we can extract the greatest 
power form the source by making Ri=RL (assuming that we could do 
that). But that is not so.  

I will work from this figure to demonstrate this.  

 
Figure 4. 

A little basic electrical engineering algebra tells us that: 

2
L LP I R  (3) 

and, in the case of interest, since Ei and RL are constant, P will 
increase with I. 

But (given that Ei is constant) I will be greatest when the total circuit 
resistance, Ri+RL, is least. But with RL constant, that will happen 
when Ri=0, not when Ri-RL. 
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Which of course is all sensible. So no, we cannot use the maximum 
power transfer theorem “backwards”. 

4 AC CIRCUITS 

4.1 Introduction 

Now I will venture into the world of AC circuits, and describe the 
further complications there in our use of the maximum power transfer 
theorem. 

4.2 Prerequisite 

This section is written under the assumption that the reader has a 
general familiarity with the concepts of impedance, reactance, and the 
like. If not, don’t be afraid to just skip the rest of this section. 

4.3 The visible differences 

In the AC case: 

• The internal voltage of the source is now an AC voltage (at a 
certain single frequency, for the simplest case, which I will limit the 
discussion to). 

• The internal resistance of the source is now replaced by its internal 
impedance, which might include resistive and/or reactive 
components. 

4.4 Impedance matching? 

4.4.1 Incorrect 

It is commonly (but incorrectly) said, for an AC circuit, that: 

The maximum power into the load will be obtained if the 
impedance of the load is the same as the internal impedance of the 
source. 

[I put that in red to help remind us that this is not correct!] 

That could be taken as meaning one of at least two different things. 
But I will not elaborate on those, since either way the statement is not 
(as a generality) correct. 

It is true in the special case that both the internal resistance of the 
source and the impedance of the load are “purely resistive”. In that 
case, the whole matter is identical to that discussed at length above 
for a DC circuit. 

4.4.2 Correct 

What is in fact correct in the general case for AC circuits is: 
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The maximum power into the load will be obtained if the 
impedance of the load is the conjugate of the internal impedance of 
the source 

This can be explained in several fully equivalent ways: 

• The two impedances have the same magnitudes with equal but 
opposite phase angles. 

• The two impedances have equal resistive components, and have 
reactive components of equal magnitude but opposite sign. 

• The two impedances have resistive components that are equal. 
One has an inductive reactance component and the other a 
capacitive reactance component, those of equal magnitude. 

4.5 In more detail 

An intuitive explanation of this is given in Appendix B. 

4.6 But, moving on 

Notwithstanding the full prescription of the theorem, in the AC case, 
that the impedance of the load should be the conjugate of the 
impedance of the source, from here on I will trivialize that 
complication by only using examples in which the various impedances 
are purely resistive. 

5 PRACTICAL IMPEDANCE MATCHING IN AN AC CIRCUIT 

5.1 The transformer 

This exercise will involve the use of an impedance matching 
transformer, which is just a classical transformer (suitable for use at 
the frequency, or over the range of frequencies, involved). 

So I will first review some of the properties of a transformer that will 
be important. 

 
Figure 5. 
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The figure shows a “basic AC source”, in this example with a purely 
resistive internal impedance, followed by a transformer from the 
“output” of that basic source to the actual output terminals of the 
“complete” source. This transformer has a turns ratio of 1:n; that is, 
its secondary winding (on the right, S) has n times as many turns as 
its primary winding (on the left, P). 

For us there are two consequences of the presence of this 
transformer. One is shown here: 

 
Figure 6. 

Here the output terminals are open, a situation in which we see across 
the output terminals the internal voltage of the source (that is, the 
“complete source”, as described just above). 

Then, with no current through the “load”, and thus through the 
secondary of the transformer, there is (ideally) no current through the 
primary winding either. Thus there is no voltage drop though the 
internal resistance, Ri, and so the voltage across the transformer 
primary winding is just Vi.  

But the voltage appearing across the secondary winding is modified by 
the turns ratio, n. Thus the voltage across the (open) output terminals, 
which I call Vi’, is nVi. 

The second consequence of the interposing of this transformer is seen 
here: 

 
Figure 7. 

I have just removed the AC voltage source (and replaced it by a short 
circuit (again the heavy line represents that ”short circuit”). The big 
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arrow suggests “looking into” the source circuit at its output terminals 
with an (AC) resistance measuring instrument (much as we saw in the 
DC case). 

The basic source internal resistance, Ri, is now across the transformer 
primary winding. So looking into the transformer secondary winding, 
we see that resistance multiplied by the square of the transformer 
turns ratio, n. So the equivalent internal resistance of this 
transformer-augmented “complete source” is n2Ri. 

Now consider this figure:  

 
Figure 8. 

It says, based on the matters illustrated a bit earlier, that source A, 
with internal voltage Vi and internal resistance Ri, followed by a 
transformer of turns ratio n, is exactly equivalent to source B, with 
internal voltage nVi and internal resistance n2Ri . 

5.2 Now the real thing 

Here I have again added annotations pertinent to our real interest. 

 
Figure 9. 

Thus shows a basic source whose internal resistance is Ri. And I show 
a load whose resistance is RL, and that is not the same as Ri. And we 
have a transformer whose turns ratio, n, we can specify as needed. 

If we choose that turns ratio as follows: 
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L

i

R
n

R
  (4) 

then the “complete” source circuit will, at its output terminals, have 
an apparent internal impedance equal to RL, and maximum power 
transfer will be achieved. 

The very same principle can be used when the internal impedance of 
the source is not purely resistive. But the load impedance must have 
the same phase angle (the same ratio of reactance to resistance) as 
the internal impedance of the source. 

This “impedance matching” scheme was at one time widely used in 
audio amplifiers for music reproduction systems2, and is widely used 
at the output of radio transmitters. 

-#- 

                                      

2 And when those amplifiers used vacuum tubes, there had to be an output 
transformer anyway, and so it was just made with the proper turns ratio. But later, it 
became the preferred practice to have the audio amplifier output circuit have as low 
an impedance as possible. Then the loudspeaker load would not extract the 
theoretical maximum power from the amplifier (which would be immense and far 
beyond the amplifiers actual current supplying capabilities, or the speaker’s power 
handling capabilities). 
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Appendix A 

Proof of the theorem 

A.1 INTRODUCTION 

In this appendix I derive the maximum power transfer theorem to 
show its validity. 

I will repeat a previously-seen figure here for ease of reference. 

 
Figure 10. 

The current in the circuit (and thus in the load), as a function of RL, is 
given by: 

i

i L

V
I

R R



 (5) 

The power in the load, PL, is given by: 

2
L LP I R  

Substituting for I we get: 

 

2

2
i

L

i L

V
P R

R R



 (6) 

Expanding the denominator, we get: 

2

2 22
i

L L
i i L L

V
P R

R R R R


 
 (7) 

which we can rewrite as: 

2

2

2

i
L

i
i L

L

V
P

R
R R

R


 

 (8) 
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or as: 

2

2 1 2
i

L
i L i L

V
P

R R R R
 

 (9) 

If we assume that there is only one maximum for PL (reasonable in 
light of the graph of figure 3), we could find that maximum by taking 
the derivative of the equation for PL, with respect to RL, setting that 
derivative to zero, and solving the resulting equation for RL. That 
differentiation, however, is rather tedious. 

But from equation 8 we see that PL will be a maximum when the 
denominator is a minimum.3 And we can find that point by taking the 
derivative of the denominator with respect to RL, setting that 
derivative to zero, and solving the resulting equation for RL. 

We take that derivative here (note that Ri is a constant): 

  2 22 1 ( ) 0 12 i Li L i L
L

d
R RR R R R

dR
       (10) 

 

We can rearrange the earlier equation to this: 

 
2

2 1
2 12 i

i L i L
L L

Rd
R R R R

dR R
 

    (11) 

Setting that derivative to zero we get: 

2

2 1 0i

L

R
R


   (12) 

                                      

3 Many thanks to the author of the Wikipedia article on this topic for that hint. 

The notation on the left means the first derivative of the 
expression in parentheses with respect to RL. It is an 
elaboration of the basic derivative notation: 

dy
dx

 

which means “the derivative of y with respect to x”. 
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or 

2

2 1i

L

R
R

  (13) 

Solving that for RL, we set: 

2 2
L iR R  (14) 

or 

L iR R   (15) 

Of course, only the positive solution makes sense, so we end up with: 

L iR R  (16) 

A further differentiation (I will spare both of us that exercise) will 
confirm that this result is in fact a minimum for the denominator and 
thus is a maximum for PL as a function of RL. 

Quod erat demonstrandum. 

-#- 
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Appendix B 

Maximum power transfer in a generalized AC circuit 

B.1 INTRODUCTION 

In this appendix I give an intuitive validation of the condition for 
maximum power transfer in a generalized AC circuit, as stated in 
Section 4.4.2. 

As for Section 4.1, This Appendix is written under the assumption 
that the reader has a general familiarity with the concept of 
impedance, reactance, and the like, If not, don’t be afraid to just skip 
the rest of this Appendix. 

B.2 THE ILLUSTRATIVE CIRCUIT 

I will work with the example source shown here. 

 
Figure 11. 

We see the internal AC voltage of this source circuit, with voltage Vi 
(volts) and frequency f (hertz). The internal impedance, Zi, comprises a 
resistive component with resistance Ri (ohms) and an inductive 
component with inductance Li (henries). At the frequency of operation, 
it has an inductive reactance of XLi ohms. That reactance is given by: 

2LX fL  (17) 

B.3 THE LOAD 

Here I show a load connected that complies with the prescription of 
Section 4.4.2; that is the impedance of the load is the conjugate of 
the internal impedance of the source. 
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Figure 12. 

The load I have used has an impedance of ZL, which comprises a 
resistance RL and a capacitance of CL, which at the frequency of 
interest, f, has a capacitive reactance of XCL. 4 That reactance is given 
by: 

1
2

Xc
fC

   (18) 

where C is the capacitance in farads. 

Note the minus sign. By convention, the sign of an inductive reactance 
value is positive, and of a capacitive reactance value negative. 

From the “conjugate” prescription we followed, we know that we 
should have: 

L iR R  (19) 

and 

CL LiX X   (20) 

                                      

4 Yes, I know it is confusing to have in the subscripts “L” for load and, elsewhere, 
“L” for inductive. But I’m in this too deeply now to change to other notation. 
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But that now gives us an inspiration. Consider this figure . 

 
Figure 13. 

Here I have gathered the reactances XLi and XCL with a dashed line 
enclosure. Since those reactances have the same magnitude but 
opposite signs, they combine to present zero reactance (a “short 
circuit”), so the circuit becomes equivalently as seen in here. 

 
Figure 14. 

The heavy line is a fanciful reminder of that “short circuit” I mentioned 
above. 

But part of the prescription of Section 4.4.2 means that the resistive 
component of the load impedance, RL, is the same as the resistive 
component of the internal impedance of the source, Ri  and we made 
that true here. 

Thus, this load provides for the maximum transfer of power from this 
source. 

Quod erat demonstrandum. 
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B.4 ANOTHER OUTLOOK 

We could look at Figure 13 another way. If we have an inductance 
and a capacitance in series, and if at the frequency of operations their 
reactances have the same magnitude and (by necessity) the opposite 
sign, this is said to be a series resonant circuit, which has a zero 
impedance. That is, it looks like a short circuit. 

So this too takes us to the equivalent circuit of Figure 14. 

-#- 

 


