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ABSTRACT AND INTRODUCTION 

The spreadsheet application Microsoft Excel includes a tool that will 
calculate the discrete Fourier transform (DFT) or its inverse for a set of 
data. Users not familiar with digital signal processing may find it 
difficult to understand the scales used for the input and output data 
for this process. In this article we review the concept of the discrete 
Fourier transform, summarize how the Excel tool is used, and explain 
the meaning of the scales for the data. 

THE FOURIER TRANSFORM 

Imagine that we have a function of time that represents a segment of 
an audio waveform. If we calculate the Fourier Transform of this 
source function, we get a new function that describes the amplitude 
frequency spectrum of the waveform. This portrays how the power in 
the waveform is distributed over frequency.1 The waveform is said to 
be described in the time domain, while the spectrum is described in 
the frequency domain. 

We can have the same concept when the source function occurs “in 
space” rather than in time, such as a plot of the height variations in a 
surface as we travel along a line across it, or the variation in the 
density of a photographic print as we travel along a line across it. In 
this case, the source function is in the space domain, and the Fourier 
transform is in the spatial frequency domain. 

Then, if we have the amplitude spectrum of a waveform we can 
calculate its inverse Fourier transform, which will be the waveform 
itself. 

Calculating a Fourier transform (or inverse Fourier transform) is very 
tedious. It involves the integration of the products of continuous 
functions—in theory, an infinite number of them. That’s because the 
transform result is itself a continuous function, meaning that it can 

                                      

1 Actually, this distribution is really indicated by a power spectral density function, or 
power spectrum. The amplitude spectrum, with which we deal here, is the square 
root of this function, and the word amplitude (contrasted with power) is a reminder 
of this. 
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have a distinct value for an infinite number of points along its 
“domain”. 

But in another context, the job becomes more practical. 

THE DISCRETE FOURIER TRANSFORM 

The Nyquist-Shannon sampling theorem tells us that if we have a 
waveform that contains only components below a certain frequency, 
then if we record the instantaneous value of the waveform at 
repetitive instants occurring at a rate of twice that frequency, we will 
have a complete description of the waveform. This means, for 
example, that from this suite of data alone we could precisely 
reconstruct the entire waveform, or conduct any possible kind of 
analysis of the waveform itself. This suite of data is said to be a 
“sampled” representation of the waveform. 

If we have this suite of sampled data for a waveform segment, we 
can readily calculate a sampled description of the Fourier transform of 
the waveform itself. This is said to be the discrete Fourier transform 
(DFT) of the waveform. “Discrete” implies that both the source 
waveform and the resulting function are described with “discrete” 
values (samples) 

Just as the suite of sampled data is a complete, precise description of 
the waveform itself, so is the suite of sampled data of the DFT a 
complete, precise description of the actual Fourier transform of the 
waveform. 

And there is the inverse discrete Fourier transform (IDFT), which will 
take the sampled description of, for example, the amplitude frequency 
spectrum of a waveform and give us the sampled representation of 
the waveform itself. 

The discrete Fourier transform is often, incorrectly, called the fast 
Fourier transform (FFT). This is not a particular kind of transform. 
Rather, it is a highly-efficient procedure for calculating the discrete 
Fourier transform. Especially during the earlier days of computing, 
when computational resources were at a premium, the only practical 
way to compute a DFT was by way of the FFT procedure. Thus 
people came to think that “FFT” was the name of the transform it 
practiced and the result it produced. 

If in fact we use the FFT procedure to compute the DFT of a function 
(and there are other ways to do it), it is perfectly accurate to say, “we 
ran the FFT on the input data”, but in fact the result is the DFT of the 
input function. 
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THE EXCEL FOURIER ANALYSIS TOOL 

The spreadsheet application Microsoft Excel will take a suite of data 
and calculate its discrete Fourier transform (DFT) (or the inverse 
discrete Fourier transfer). It uses the FFT procedure to compute the 
DFT. 

The two data suites 

The suite of input data must have a size that is an integral power of 2 
(such as 16 points or 1024 points). This is a requirement of the FFT 
procedure used to calculate the DFT. 

The suite of output data will have the same size as the suite of input 
data. 

Operation 

To do this operation, we open the Tools>Data Analysis>Fourier 
Analysis dialog (Data Analysis functionality must be installed in Excel), 
indicate whether it is the forward or inverse transform we want to 
perform, and identify the suite of source data as a range. We then 
indicate where we want the output data deposited. We are apparently 
invited to specify a range for that, but the output data will always be 
deposited into an area the same size as the input data area (and 
running in the same “direction”), so only the starting cell we cite 
makes any difference. 

Note that the menu does not identify this as discrete Fourier analysis. 

The scales of the data 

But now there comes the matter of understanding the frequency and 
time scales of the two sets of data points. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15n:
0.5

Ts

Tw = 8.0 ms

t (ms): 1.0 3.5 7.50

A. Source data scale (time domain)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15n:

∆f

f (Hz): 0 125 250 875 -0

B. Output data scale (frequency domain—double-sided)

fN=fs /2

-875 -125-250±1000

fs= 2000 Hz

1.5 2.0 2.5 3.0 4.0 4.5 5.0 5.5 6.0 6.5 7.0

375 500 625 750 -500

DFT

(fs/N)
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Figure 1. Data scales with the DFT 
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Let’s imagine for the moment that we have a set of 16 values 
describing 8 ms of waveform, and we wish to take its DFT. The 16 
values are entered into a range on an Excel spreadsheet. 

Figure 1 will help us to understand this. We must first be clear on the 
time scale for the source data (describing the waveform), which is a 
creature of the time domain. Panel A shows the scale applicable to the 
source data. 

We execute the Excel DFT tool and receive a set of 16 output values. 
We know that these represent, in sampled form, a “curve” that is the 
amplitude frequency spectrum of the source waveform. This spectrum 
is a creature of the frequency domain. But what is the frequency scale 
for it? 

We see the 16 points (numbered 0-15) assigned to our 8-ms 
waveform segment. We designate the number of points as N. The 
time interval between the points is 0.5 ms; we call this the sampling 
interval, Ts. We also see that these 16 points embrace our total of 8 
ms, a period that we call the overall sampling window time, Tw. The 
sampling frequency here, Ts,  is 2000 Hz: 1/(0.5 ms). 

Note the peculiar way I draw the 8-ms span. Since we have 16 points, 
the distance between the first and last point is 15 interpoint times 
(only 7.5 ms altogether). So we have to think of each point in the 
center of a time slice 0.5 ms long, and our whole sampling window 
embraces 16 of these. 

Now in panel B we see the output data points. This will be on a scale 
of frequency. But what scale? 

It turns out that the entire span of the frequency scale2 always 
corresponds to the sampling frequency, fs. Thus, if we have N points, 
the distance between points corresponds to a frequency increment of 
Fs/N (in this case, 125 Hz: 2000/16). 

Now we are ready to deal with another peculiarity. 

The double-sided frequency scale  

Firstly, note that if our signal meets the Nyquist criterion for eligibility 
to be represented by samples taken at a rate of Ts, it will have no 
frequencies at or above the “Nyquist frequency”, TN, which is Ts/2 
(1000 Hz in our example). Thus we will have no need for results at 

                                      

2  Again, we have to draw it with the little peculiarity I just mentioned. 
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points 8-15 in our chart (the area shaded in gray), and it might seem 
that this portion of the output is redundant. 

But, in formal mathematical work, any signal we think of as having 
frequency f must be thought of as comprising two components, one 
with frequency f and one with frequency -f. Thus, in such work, we 
often have a “double-sided” frequency scale, extending both above 
and below zero. 

We have that same situation here, but with a wrinkle. The “negative 
frequency” part of the scale, rather than being to the left of zero, has 
been scooted to the right, just beyond the “positive frequency” part of 
the scale. 

And as we might expect (if we ignore a little subtlety we’ll get to a 
little later), the result data in that portion is just a mirror image of that 
in the “positive frequency” part of the scale. Thus (so far as we can 
see at this point), the value at point 14 is the same as the value at 
point 2, and the value at point 10 is the same as the value at point 6. 

You may wonder why the program even outputs that part of the list of 
results. We’ll see the answer in the next section. 

Result values as complex numbers 

Another peculiarity we may notice is that the output values will 
sometimes have this appearance: 0.00021+0.00013i. What’s with 
that? 

Each of the output values describes a component of the original 
waveform at a certain frequency. This can be thought of as a “sine 
wave” of that frequency with a certain amplitude and a certain time 
phase. 

There are several ways that can be represented. First, note that 
although we call these recurrent functions “sine waves”, in 
mathematical work, we ordinarily represent them with a cosine 
function. This has the same shape as a sine wave, but has its time 
reference in a different place. The reason the cosine representation is 
used is just that it makes some of the math more tidy (in particular the 
matter of the plus or minus signs of certain quantities we encounter in 
our calculations). 

Accordingly. we could describe a component of the waveform at a 
certain frequency by stating the amplitude of a cosine function at that 
frequency plus its time phase (stated as an angle). 
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Alternatively, we can consider the component to be composed of the 
combination of a cosine function and a sine function with individual 
amplitudes. 

It turns out that this latter form can be stated mathematically by 
giving the amplitude of a cosine wave as a complex number; that is, a 
number which is the sum of a regular “real” number plus an 
“imaginary” number, which is a multiple of the square root of -1 
(which we represent by the symbol i). (Don’t try to visualize this!) The 
real part is the amplitude of the cosine sub-component; the imaginary 
part is the amplitude of the sine sub-component. 

In mathematics, we write it this way: 25.2+67.3i. 25.2 is the 
amplitude of the cosine sub-component, and 67.3 is the amplitude of 
the sine sub-component.3 

Now, in many cases, we don’t care about the time phase of the 
components. We just want the “absolute amplitude frequency 
spectrum”, which would consist of the magnitudes of the component 
amplitudes, with the phase angles just not mentioned. The values 
returned by the Excel DFT tool can easily be converted to that form 
with this function: 

 =IMABS(<output data point>) 

Back to the “redundant” part of the output table 

Now that we’re aware of the phase angle implications of the 
components, we must note that when we think of a component as 
comprising two subcomponents, one at frequency f and one at 
frequency -f, although they have the same physical phase angle (they 
are after all just two manifestations of the same component), in the 
“complex” representation, the sign of the imaginary part of the 
amplitude is reversed in the “negative frequency” aspect. 

Accordingly, the result of the DFT for point 10 is not quite identical to 
that for point 6—the imaginary part of the amplitude has a reversed 
sign. Thus it is really required that the seemingly-redundant portion of 
the output table be delivered. 

                                      

3 In electrical engineering, a different convention is used. There, the “imaginary unit” 
is represented by j, not i, to avoid confusion with the use of the symbol i for current. 
And this format is used: 25.2+j67.3. It is not as “algebraically rigorous” as 
25.2+67.3j, but is perhaps easier to recognize when we encounter it. 
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“Over-Nyquist” components 

Suppose in fact that our input waveform did contain a component at, 
say, 1175 Hz (beyond the Nyquist limit for the sampling rate we are 
using). The amplitude of that component would show up in our result 
at point 9. But we have at point 9 the amplitude of the component at 
-875 Hz (the negative frequency alter ego of the component at 875 
Hz). So in fact the numerical value we find at point 9 of the output 
data suite is the sum of the amplitude for the component at 1175 Hz 
and the “reversed phase” amplitude of the component at 875 Hz. 

Clearly this means that some data has been ”scrambled”, and in fact, 
this frequency response does not unambiguously represent our input 
waveform. 

This is an example of “aliasing”, an anomaly that occurs in the 
sampled representation of a waveform with a sampling rate that is not 
greater than twice the frequency of the highest-frequency component 
of the waveform.  

THE INVERSE TRANSFORM 

Next we will look at the application of the inverse discrete Fourier 
transform, again with emphasis on understanding the scales of the 
two data suites. 

There are two classical situations in which we may wish to employ 
the inverse discrete Fourier transform: 

• We have the amplitude spectrum of a waveform and would like to 
determine the waveform itself. 

• We have the amplitude frequency response of a system, and would 
like to know its impulse response: the waveform that will come out 
of the system when we send into it an “impulse”, which is a single 
pulse with zero time width (but finite energy).. 

An example of the first case 

We will first use an example that can be visualized in terms of the first 
case. For ease of comparison, we will choose numbers such that the 
two scales are the same as in our earlier example. Figure 2 shows this 
situation. 

Assume that we have data describing the amplitude frequency 
spectrum of an unknown waveform. The data points are spaced at 
every 125 Hz along the frequency axis (starting with 0), and the 
waveform has no non-zero value at 1000 Hz or above. 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15n:

Ts

Tw = 8.0 ms      (N/ fs)

t (ms):

B. Output data scale (time domain)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15n:

f (Hz):

A. Input data scale (frequency domain—double-sided)

fN=fs /2

fs= 2000 Hz 

(1/fs)

0.5 1.0 3.5 7.50 1.5 2.0 2.5 3.0 4.0 4.5 5.0 5.5 6.0 6.5 7.0

0 125 250 875 -0-875 -125-250±1000375 500 625 750 -500

IDFT

∆f

(fs/N)

 

Figure 2. Data scales with the inverse DFT 

Thus we can assume that the Nyquist frequency of the underlying 
waveform is 1000 Hz. Accordingly, since the Nyquist frequency falls 
at the center of our frequency domain scale (point N/2), we will use a 
scale of 16 points. Since the distance between points is 125 Hz, the 
entire “span” of the frequency domain scale is 2000 Hz (with the 
now-familiar “wrinkle”). As we saw before, that must be the sampling 
frequency of the original signal (in the time domain), fs. (When we get 
the waveform itself, it will be described in terms of samples at that 
rate.) 

The amplitude values are all “real” (not complex); that it, they all imply 
zero phase angle. 

This time, when we enter the input data into our spreadsheet, we 
must do some special housekeeping. We saw before that the result of 
the Fourier transform will always have each actual component at two 
places in the scale, one for +f and one for -f. So we must enter each 
value (except for the “zero-frequency” value, which goes only into 
point 0) into two places: points 1 and 15, 2 and 14, and so forth.4 
(We can in fact fix up our spreadsheet to do this for us so we really 
only have to enter the “positive frequency” values.) 

Now back to the matter of our scale. We have seen that in this case it 
is appropriate to use a 16-point representation of the input spectrum, 
with a total span of 2000 Hz (twice our assumed Nyquist frequency). 

                                      

4 If in fact our data points were “complex” (implying a phase angle), then we would 
place the “complex conjugate” of the value in the “negative frequency” position. 
That is, if point 3 had the value 0.06+0.07i, we would put into point 13 the 
value 0.06–0.07i. 
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This total span is in fact the sampling frequency of the actual 
waveform (fs). 

Thus, on the output data scale (in the time domain), the increment 
between points is just the sampling interval, which is 1/fs. In our 
example, where we have determined that the sampling rate for the 
waveform must be 2000 Hz, this increment between points must 
represent 0.5 ms. 

With that knowledge, we can interpret the result of the IDFT as a 
waveform on a specific time scale. But there is a wrinkle, which we’ll 
actually explore in our discussion of the second case. 

An example of the second case 

Now, let’s use an example in which we have the frequency response 
of a system and wish to determine the impulse response: the 
waveform that will come out of the system when we input a 
zero-width pulse (an impulse). 

Here again the inverse discrete Fourier transform will do the trick, but 
there is a wrinkle. 

Although of course this could never happen in real life, when we 
consider certain system frequency responses that can only exist on 
paper, the output waveform must begin before the time of the input 
pulse (such a system is described as prophetic). 

Thus, our output scale must extend both below and above zero. In 
Excel, the time scale is “folded” to become double-sided, just as we 
saw for the frequency scale. We see this interpretation of the 
time-domain scale in figure 3B. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15n:

Ts

Tw = 8.0 ms      (N/ fs)

t (ms):

B. Output data scale (time domain—double sided)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15n:

f (Hz):

A. Input data scale (frequency domain—double-sided )

fN=fs /2

fs= 2000 Hz

(1/fs)

0.5 1.0 3.5 -.050 1.5 2.0 2.5 3.0 ±4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0

0 125 250 875 -0-875 -125-250±1000375 500 625 750 -500

IDFT

-0

∆f

(fs/N)

 

Figure 3. Double-sided time domain scale 
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Here, a value presented at point 11 represents the value of our 
waveform at time -2.5 ms (2.5 ms before we introduced the input 
pulse). Again, this could not happen in reality, but it is a characteristic 
of various convenient fictional systems. 

Now, how would the value of the waveform at +5.5 ms (5.5 ms after 
the input pulse) be shown? 

Well, the range of our output does not extend that far—it would not 
include a point at +5.5 ms. 

Now, let’s go back to the (forward) DFT. We suggested (in figure 1) 
that the time scale there was single-sided. But in figure 3, for the 
IDFT, we saw that the time scale is actually double sided. Figure 4 
shows that same outlook fin the case of the DFT. 

In fact, we can look at the source data time scale either way in DFT 
operation. The reason is that, owing to the “cyclic” nature of these 
scales, in a context where we only observe the waveform over a finite 
window, point 12 could represent the value of our waveform at 
t=+6.0 sec (as suggested on figure 1A), or it could represent a point 
on our waveform at t=-2.0 sec  (as suggested on figure 4A). Either 
would have the identical effect on the DFT output (the amplitude 
frequency spectrum of the waveform). 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15n:
0.5

Ts

Tw = 8.0 ms

t (ms): 1.0 3.50

A. Source data scale (time domain —double-sided )

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15n:

∆f

f (Hz): 0 125 250 875 -0

B. Output data scale (frequency domain—double-sided)

fN=fs /2

-875 -125-250±1000

fs= 2000 Hz

1.5 2.0 2.5 3.0

375 500 625 750 -500

DFT

(fs/N)

(1/Fs)

-.05±4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0

 

Figure 4. DFT—both scales shown double-sided 

SUMMARY OF SCALE FACTORS 

The chart in Appendix A shows, for any known scale factor in a “DFT 
setup”, all the other scale factors. 
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TWO PI IN THE SKY 

There is another scheme of reckoning our two scales that is often 
encountered in engineering work with the Fourier transform. It is 
based on the concept that both our scales are actually cyclic. 

By that we mean that, in our example with an 8-ms long time scale, a 
value at point 3 can not only represent a value of the waveform at 
t=1.5 ms but also at t=9.5 ms, 17.5 ms, 25.5 ms, and so forth. 

Thus, we can imagine our scale as not being a line segment but rather 
a circle. Now, without concern for the actual numerical scale involved, 
we can speak of locations along the scale in terms of angle “around 
the circle”. Of course, since this is a mathematical concept, we 
express the angle in radians. One complete cycle around the circle (the 
span of our scale, as seen in the ordinary way) corresponds to an 
angle of 2π radians. 

Having done this, we can define the DFT itself, or describe the DFT of 
certain common waveform shapes, in terms of angle θt (lower-case 
Greek theta) on the time axis and angle θf on the frequency axis, in a 
completely general way, independent of the actual time (or frequency) 
scale involved. 

Figure 5 shows our two scales labeled this way. Note that, now we 
think of them as cyclic, there is no longer any reason to uniquely label 
the portion that represented “negative” values. An instant at “negative 
time” can just be looked at as an instant “at positive time the previous 
time around”. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15n:

Ts

Tw = 2π rad

Θτ (rad): 0

A. Source data scale (time domain—angular notation)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15n:

∆f

B. Output data scale (frequency domain—angular notation)

fs= 2π rad

DFT

(π/8)

0.5 1.0 3.5 7.51.5 2.0 2.5 3.0 4.0 4.5 5.0 5.5 6.0 6.5 7.0

π 2ππ/2π/4 3π/4π/8 3π/8 5π/8 7π/8 9π/8 11π/8 13π/8 15π/85π/4 3π/2 7π/4

Θf (rad): 0 π 2ππ/2π/4 3π/4π/8 3π/8 5π/8 7π/8 9π/8 11π/8 13π/8 15π/85π/4 3π/2 7π/4

(π/8)

 

Figure 5. Scales in angular notation 

#
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APPENDIX A 

Scale Factors 

This chart shows, for any known scale factor in a system of a time 
scale and frequency scale related by the discrete Fourier transform (or 
its inverse), all the other scale factors. 

In each case, the number of points in the source and result data suites 
is denoted N. 

Use the row labeled at its left by the scale factor that is known. All 
the corresponding scale factors for the time-domain and 
frequency-domain scales are then listed. 

The shaded cell is the one whose value is known.  

 Time domain scale Frequency domain scale 

What is 
known 

Total time 
span 
TW 

Sampling 
interval 

 Ts 

Sampling 
frequency 

fs 

Scale 
width 

fw 

Frequency 
increment 

∆f 

Time scale 
Total span 

TW 
WT  

N
TW  

WT
N

 
WT
N

 
WT
1

 

Time scale 
Sampling 
interval 

Ts 

sNT  sT  
sT
1

 
sT
1

 
sNT

1
 

Time scale 
Sampling 
frequency 

fs 
sf
N

 
sf
1

 sf  sf  
N
fs  

Frequency 
scale Total 

width 
fw 

wf
N

 
wf
1

 wf  wf  
N
fW  

Frequency 
scale 

Increment 
∆f 

f∆
1

 
fN∆

1
 fN∆  fN∆  f∆  

Note that in every case, when using “angular” notation, the total time 
span and total width of the frequency scale are both 2π. 

# 


